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Jointly Assimilating MODIS LAI and ET Products
Into the SWAP Model for Winter
Wheat Yield Estimation

Jianxi Huang, Hongyuan Ma, Wei Su, Xiaodong Zhang, Yanbo Huang, Jinlong Fan, and Wenbin Wu

Abstract—Leaf area index (LAI) and evapotranspiration (ET)
are two crucial biophysical variables related to crop growth and
grain yield. This study presents a crop model-data assimilation
framework to assimilate the 1-km moderate resolution imaging
spectroradiometer (MODIS) LAI and ET products (MCD15A3
and MOD16A2, respectively) into the soil water atmosphere plant
(SWAP) model to assess the potential for estimating winter wheat
yield at field and regional scales. Since the 1-km MODIS products
generally underestimate LAI or ET values in fragmented agricul-
tural landscapes due to scale effects and intrapixel heterogeneity,
we constructed a new cost function by comparing the general-
ized vector angle between the observed and modeled LAI and ET
time series during the growing season. We selected three parame-
ters (irrigation date, irrigation depth, and emergence date) as the
reinitialized parameters to be optimized by minimizing the cost
function using the shuffled complex evolution method—University
of Arizona (SCE-UA) optimization algorithm, and then used the
optimized parameters as inputs into the SWAP model for winter
wheat yield estimation. We used four data-assimilation schemes to
estimate winter wheat yield at field and regional scales. We found
that jointly assimilating MODIS LAI and ET data improved accu-
racy (R? = 0.43, RMSE = 619 kg - ha—') than assimilating
MODIS LAI data (R?> = 0.28, RMSE = 889 kg-ha~1') or
ET data (R2 = 0.36, RMSE = 1561 kg - ha™!) at the county
level, which indicates that the proposed estimation method is
reliable and applicable at a county scale.

Index Terms—Data assimilation, evapotranspiration (ET), leaf
area index (LAI), remote sensing, soil water atmosphere plant
(SWAP) model.

I. INTRODUCTION

HE North China Plain has the largest wheat production
in China. However, water stress has become the dominant
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limiting factor for wheat yield due to water shortages in the
region. Consequently, accurate monitoring of regional wheat
growth and yield estimation has become crucial for sustainable
agricultural development and national food security. However,
most yield prediction methods still depend on conventional
techniques, such as predictions from agro-meteorological mod-
els and empirical statistical regression models that relate
remotely sensed spectral vegetation indices and field-measured
yields. One of the main drawbacks of such empirical models for
estimating crop yields is that their application is only valid for
specific crop cultivars, particular crop growth stages, or certain
geographical regions [1], [2].

Previous studies have confirmed that mechanistic process-
based crop simulation models can be successfully applied to
simulate crop growth and estimate crop yield at a single point
scale; however, practical regional application of such mod-
els is hampered by uncertainties in the model’s structure and
processes, and especially by uncertainties in the input param-
eters and initial conditions of the crop model. Thus, there is
increasing interest in combining new methods to provide bet-
ter estimates of model parameters and initial conditions at a
regional scale with the goal of improving the simulation capa-
bilities of crop growth models [3]. Because remotely sensed
data offer the advantage of providing frequent, synoptic, and
up-to-date overviews of actual crop growing conditions over
large areas, remote sensing can be employed in conjunction
with crop models to predict crop yield at a range of spatial
scales [4]. Furthermore, remotely sensed data can be used to
complement crop model simulations under situations that are
not accounted for by the crop models [5], [6]. Therefore, the
data assimilation technique has increasingly been applied to
improve the simulation ability of crop models at large spatial
scales [7], [8]. A number of studies have assimilated remote-
sensing data into crop growth models to estimate crop yield
with considerable success [8]-[11].

Most agricultural data assimilation studies have chosen leaf
area index (LAI) as a unique state variable in crop growth
models [12], [13] to estimate crop yield, with the simulation
conducted in potential mode (i.e., based on the assumption that
no other factors limit growth). Since other limiting factors (e.g.,
water stress, nutrient deficiencies, and pests) are not accounted
for in the assimilation procedure, this leads to large estimation
errors compared with field-measured crop yield. There have
been several studies of bivariable assimilation, which attempts
to account for more factors that affect growth, and there have
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been some promising results. For example, Nearing et al
[14] assimilated remote-sensing observations of LAI and soil
moisture into the decision support system for agro-technology
transfer-cropping system model (DSSAT-CSM) CERES model
[15] using an ensemble Kalman filter (EnKF) and a sequential-
importance resampling filter. They found that the potential of
assimilation to improve end-of-season yield estimates was low
due to a lack of root-zone soil moisture information, errors in
LAI observations, and the weak correlation between leaf and
grain growth. Ines et al. [16] developed a data-assimilation
(DA) framework for crop modeling that incorporated remotely
sensed soil moisture and LAI into the DSSAT-CSM-Maize
model using EnKF assimilation. They found that independent
assimilation of LAI or soil moisture slightly improved the
correlation between simulated and measured yield, but that
the yield estimation improved greatly when soil moisture and
LAI were assimilated simultaneously. These results indicated
that bivariable assimilation has the potential to optimize crop
parameters and state variables, thereby improving crop yield
estimation.

In addition to LAI and soil moisture, evapotranspiration (ET)
can be assimilated into crop models. Specifically, LAI and ET
reflect two important crop physiological processes: 1) LAI sim-
ulates the crop’s canopy development, which determines light
interception and the potential for photosynthesis; 2) ET reflects
the soil moisture level and thus, the water available to sup-
port plant growth; the ratio of actual to potential ET indicates
the degree of soil water stress and thus, the magnitude of the
constraint on plant growth. Improving the simulation of these
two parameters can be critical for accurate crop yield estima-
tion at both field and regional scales. Several previous studies
have attempted to optimize the parameters of the SWAP model
through ET assimilation using different remote-sensing datasets
to adjust the relevant model parameters. However, most of the
studies were based on the ET retrieved by the surface energy
balance algorithm for land (SEBAL) model [17] based on data
from the Landsat Thematic Mapper (TM). Irmak and Kamble
[18] assimilated SEBAL-calculated ET into the SWAP model
to estimate the uncertainty of the SWAP parameters by means
of genetic algorithms. They input the optimized parameters
into the SWAP model to estimate soil water-balance condi-
tions and support on-demand irrigation scheduling. Vazifedoust
et al. [19] developed a constant-gain Kalman filter DA algo-
rithm to forecast total wheat production through assimilating
remotely sensed LAI and/or relative ET, and found they could
obtain a reasonably good prediction of yield 1 month in advance
at a regional scale. Droogers et al. [20] assimilated ET val-
ues derived from Landsat TM data using the SEBAL algo-
rithm to optimize the depth of irrigation using an automatic
optimization program, and then applied a forward-backward
approach to test the minimum return time of the satellite and
the required accuracy of remotely sensed ET to permit accurate
assessment of irrigation applications. They found that irriga-
tion application could be estimated with reasonable accuracy.
Charoenhirunyingyos et al. [21] combined the SWAP model
with genetic algorithms to assimilate remotely sensed LAI,
ET, (actual ET), or both simultaneously by searching for the
most appropriate sets of soil hydraulic parameters that could
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minimize the difference between the observed and simulated
LAI or ET,, and found that different assimilation strategies
could achieve high accuracy of soil moisture estimation at
different soil depths. All of these previous studies demon-
strated that ET is an important parameter in crop monitoring
because it integrates the effects of multiple environmental fac-
tors (e.g., precipitation, temperature, and wind speed) with soil
moisture conditions, which strongly influence crop function-
ing, development, and yield. Although soil moisture content
would provide a more accurate reflection of water stress, it is
difficult to determine by means of remote sensing once a crop
covers the soil surface completely. In arid and semi-arid areas,
it would be difficult both in theory and in practice to improve
the performance of wheat yield estimation without assimilating
information on levels of water stress. Remote-sensing-derived
LAI and ET values are, therefore, important parameters for
data assimilation because of their strong relationship with crop
growth and thus, crop yield. Thus, assimilating both LAI and
ET should offer advantages over single-variable assimilation
strategies.

It can be challenging to assimilate data with coarse resolu-
tion such as the 1-km MODIS LAI and ET products into crop
models, because these data tend to greatly underestimate the
values compared to ground-based observations [22], [23]. This
is due to a combination of the mixed-pixel effect (i.e., the low
frequency of pixels that contain only the crop) and the het-
erogeneous land cover in most agricultural areas [24], [25]. In
addition, there is often a mismatch in the spatial scale between
remote-sensing observations and the crop model’s state vari-
ables, so directly assimilating 1-km MODIS products values
would introduce significant errors. There are two main solutions
to reduce the scale effect. First, the parameter values retrieved
by remote-sensing data or parameters used by the crop models
can be scaled down or up,respectively, so that both use the same
scale. Second, the temporal trends or phenological characteris-
tics of the remote-sensing data can be assimilated into the crop
model [26]; in this approach, the goal is to accurately capture
the trends over time, which is particularly useful when the first
approach is known to greatly overestimate or underestimate the
field-measured values.

In this study, we chose the second approach and developed a
crop model—-data assimilation framework for assimilating the
temporal variation obtained from MODIS ET and LAI data
into a crop model to improve its ability to estimate crop yield
at a regional scale. We then compared the model’s estimation
accuracy without data assimilation to the accuracy based on
assimilation of one or both parameters. Despite the obvious
underestimation of field values by the MODIS LAI [23], [24]
and ET [27], [28] products in regions where winter wheat is
planted, these two products can accurately capture the temporal
variation in relatively pure pixels. Thus, the objectives of this
study were as follows:

1) to evaluate the potential use of a time series of 1-km
MODIS ET and LAI products for the estimation of
regional winter wheat yield;

2) to investigate whether jointly assimilating the MODIS ET
and LAI products performed better than assimilating each
of these parameters individually.
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Fig. 1. Location of the study area, of the meteorological stations, and of the 24 counties in the study area in southern Hebei Province.

II. MATERIALS AND METHODS
A. Study Area

The study was implemented in a planted area dominated by
winter wheat in the Baoding and Hengshui districts (115°10'E
t0 116°34'E, 37°03'N to 39°36’N) of southern Hebei Province,
China (Fig. 1), covering 16 335km? in total and consisting of
24 counties. The prevailing cropping pattern is winter wheat
in rotation with summer corn. In general, the topography of
the region is characterized by alluvial plains with gently rolling
topography. The regional climate is a continental monsoon with
an average annual rainfall ranging from 400 to 800 mm and
an average temperature ranging from 9°C to 15°C. In 2009,
we obtained data for the seven key phenological stages of win-
ter wheat: 1) green-up (early March); 2) jointing (late March);
3) elongation (early April); 4) booting (late April); 5) head-
ing (early May); 6) anthesis (middle May); and 7) maturity
(early June). Fig. 1 shows the locations of the meteorological
stations used to obtain climate data for the study area. Based
on observations during the past 30 years at the Luancheng
Agro-Ecosystem Experimental Station of Chinese Academy of
Sciences, which is situated only 50 km from our study area,
the actual ET of irrigated farmland in this region is between
800 and 900 mm annually (i.e., rainfall is much less than the
actual ET), and an average of 350 mm of groundwater must
be extracted annually to cover the water deficiency [29]. Thus,
timely irrigation during crucial phenological stages is important
to guarantee high wheat yield in this region.

B. SWAP Model

SWAP is a comprehensive agro-hydrological model for ana-
lyzing the interactions among soil, water, atmosphere, and

plants. It was developed by the Wageningen University and
Research Center (Wageningen, the Netherlands). The SWAP
model includes a growth simulation module (WOFOST 6.0) to
simulate crop growth. The WOFOST model provides estimates
of biomass and grain yield at a daily time step for differ-
ent crop types. The simulation results are directly usable for
qualitative crop-specific assessment of the growing season and
for crop yield estimation. SWAP also offers a powerful abil-
ity to simulate the soil water balance, which can be used to
enhance the weaker simulation provided by the WOFOST mod-
ule. Potential ET in the SWAP model is calculated using the
Penman—Monteith equation [30]. The actual ET is calculated by
applying a factor that accounts for the reduction in root water
uptake caused by water or salinity stress to adjust the poten-
tial ET. The ratio of actual to potential ET is used to quantify
the degree of water stress and its impact on crop growth. The
SWAP model can be implemented in potential mode (based on
the assumption of no constraints imposed by water availability)
and water-limited mode. The difference in yield between the
potential and water-limited modes can be interpreted as the net
effect of soil water stress. Given the aridity and water shortages
in the study area, we used the water-limited mode of SWAP in
this study. The effects of nutrient deficiencies, pests, weeds, and
diseases on crop growth and yield have not yet been simulated
in the current version (3.0.3) of the SWAP model, so we did not
account for these factors.

C. SWAP Model Calibration

The SWAP model requires weather, soil, crop, and man-
agement parameters for each cell in the grid to simulate crop
yield. Before a crop model can be implemented in a given
agro-environment, calibration and performance evaluation must
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be done to ensure that the model can accurately simulate the
entire crop growth process by accounting for the variability
of the parameters that characterize the crop model. In the
present study, we calibrated the SWAP model for wheat cultivar
“Hengguan 35” at the Gucheng experiment station (Fig. 1). An
automated weather station installed for long-term observations
at this site measures daily maximum and minimum tempera-
tures, solar radiation, wind speed, actual vapor pressure, and
precipitation. These variables were used to drive the SWAP
model at the field scale. For complete details of calibration of
the SWAP model for the study area, refer to our previous work
[13], [31].

We performed a global sensitivity analysis using the
extended Fourier amplitude sensitivity test method [32] to ana-
lyze the parameters that the SWAP model was most sensitive
to, with the goal of identifying the most important parameters
to be optimized. Using the Simlab software (version 2.2, Joint
Research Centre, Ispra, Italy), we obtained the sensitivity of
the SWAP model to ET and LAI. We found that the irrigation
schedule and emergence date were very sensitive to daily ET
and LAI and greatly affected the final yield. In addition, less
sensitive parameters are fixed structural parameters of the soil
that cannot be adjusted and variables such as the soil evapora-
tion coefficient have a physical meaning and must be calculated
based on field experiments. Initial parameters such as the emer-
gence date, minimum temperature at which growth begins, and
initial total crop dry weight generally vary across large spa-
tial regions, which makes it difficult to acquire accurate values
of these parameters at the regional scale. Therefore, we chose
three parameters to which the model was sensitive based on
the global sensitivity analysis (irrigation date, irrigation depth,
and emergence date) as the parameters to be optimized in the
assimilation procedure.

To implement the SWAP model at a regional scale, the spa-
tial distribution of the climate data from various meteorological
stations must be determined. In this study, we used a com-
mon Kriging interpolation routine in ArcGIS 9.3 to estimate the
values of weather variables for each 10 km x 10 km grid cell,
including daily maximum and minimum temperatures, solar
radiation, wind speed, and actual vapor pressure. For precipita-
tion, we used a daily gridded precipitation dataset with 25 km x
25 km cells that we obtained from the China meteorological
data sharing service system (http://cdc.cma.gov.cn/).

D. Field-Measured Data

Half-hourly eddy covariance data from the flux tower at the
Gucheng experiment station (Fig. 1) was used to calibrate and
validate the ET assimilation at a field scale. The eddy covari-
ance technique is a widely used method to measure ecosystem
mass and energy fluxes [25]. Since the data obtained from the
flux tower is the latent heat flux, which is the equivalent of the
energy used in the description of the ET process, it must be
converted to the same time step as the instantaneous ET. Actual
instantaneous ET (mm day ') was calculated as follows:

4 1
:86 00 x OOOL

ET
PwA

E (1)
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where LE is latent heat flux (W -m™2), p, is the density
of water (kg-m™3), and X is the latent heat of vaporization
(J-kg™1), and there are 86400 s in a day and 1000 mm in 1 m.
The latent heat of vaporization can be calculated from the air
temperature, but we have used constant values for p,, and A, so
(1) can be simplified into

ET = 0.0351 LE. )

This equation converts the latent heat flux into an equiva-
lent daily ET. Since the flux data were available at half-hour
intervals, the daily ET for day i(E7;) can be obtained as
follows:

N
1 )
o )
Fh=y ; ETo i 3)

where E'T} is the j th 30-min observation on day 4, and [V is the
number of 30-min measurements of LE, which is usually 48 per
day. When N was less than 40, we considered the data quality
unacceptable and did not include it in our analysis.

To capture the growth conditions for winter wheat at a
regional scale, we selected 29 sample plots representing differ-
ent winter wheat growing conditions throughout the study area
and monitored the plots from March to June 2009. We manually
measured winter wheat yields in these plots before harvesting
in mid-June, and obtained county-level wheat yield data for the
24 counties in the study area from Hebei statistical yearbook in
2009.

E. Crop Type Map Derived From Landsat TM

We acquired six Landsat TM scenes of the study area dur-
ing the winter wheat growing season (on March 14, May
17, and June 2, 2009, during the green-up, filling, and matu-
rity stages, respectively). The TM images were geo-referenced
to the Albers conical equal area map projection using field-
measured ground control points. After geometric correction,
the root-mean-square error (RMSE) of the location was smaller
than one pixel (30 m) for each TM image. An atmospheric
correction was applied using the fast-line-of-sight atmospheric
analysis of spectral hypercubes (FLASSH) atmospheric correc-
tion module of the ENVI software (Version 5.1, Exelis Visual
Information Solutions, http://www.exelisvis.com) to obtain the
reflectance value in each TM band. We obtained the spatial dis-
tribution of crop types in the study area using the Mahalanobis
distance algorithm provided by the ENVI software based on
supervised classification of the three TM images. We used the
resulting map to mask out all pixels that were not classified
as winter wheat fields, most of which represented cotton, other
crops, buildings, bare soil, trees, and water. Fig. 2(a) shows the
resulting crop type map. We overlaid the 30-m crop type map on
a 1-km grid so that we could calculate the pixel purity (i.e., the
percentage of winter wheat in each cell of the grid. The winter
wheat pixels with the highest purity were mostly located in the
middle of the study area [Fig. 2(b)]. In our subsequent assimi-
lation procedure, we only included grid cells with at least 50%
winter wheat to reduce the influence of other types of land cover
on the analysis.
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Fig. 2. (a) Land use map at a 30-m resolution and (b) winter wheat purity map
at a 1-km resolution.

F. MODIS ET and LAI Products

The MODI16 global ET product is part of the National
Aeronautics and Space Administration Earth Observing System
(NASA/EOS) project to estimate global terrestrial ET using
satellite data. The MOD16 ET datasets are estimated using an
improved ET algorithm based on the Penman—Monteith equa-
tion [25], [27]. In the present study, we used the 8-day MODIS
ET product (http://www.ntsg.umt.edu/project/mod16).

We wused the 1-km 4-day MODIS LAI product
(MCDI15A3) to cover the majority of the growing season from
January to June 2009 (http://reverb.echo.nasa.gov/reverb). Due
to the presence of cloud or atmospheric contamination, the
MODIS LAI profiles did not present a smooth and continuous
series. Thus, we applied the Savitzky—Golay filtering algorithm
to smooth the MODIS LAI profile in each winter wheat pixel
[13], [33].

G. Data Assimilation Scheme

The SWAP-SCE scheme combines the SWAP model with
the shuffled complex evolution method—University of Arizona
(SCE-UA) algorithm to take advantage of the optimization
algorithm for determining the reinitialized parameters using
the time series of satellite-derived LAI and ET values. The
goal is to minimize a cost function. Uncertain input parame-
ters in SWAP, such as irrigation parameters and the emergence
date, were optimally estimated by assimilating the temporal
variations of the MODIS LAI and ET into the SWAP model
through an iterative process. The SWAP-SCE scheme was then
implemented until we obtained the best fit between the model
simulations and the satellite observations (ET, and LAI, inde-
pendently or in combination). Crop yield is the major output
of the SWAP model. After completing the assimilation proce-
dure for all of the 1-km cells containing at least 50% wheat, we

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 8, AUGUST 2015

SWAP 8-day MODIS MODIS
parameters precipitation

Vanable

lrngahon Data
calibration calculating preprocessing
, v _ v
SWAP Simulated ET RSET S-G filtering
crop model curve curve
RS LAI
curve
Y
Calculating J
Next loop (vector angle)
T e i e i e e
| '
Generating
1 new variables
|
\

SWAP
crop model

. Optimal irrigation inputs
/: el °““’“‘/4_ ‘7 and other variables

Fig. 3. Flowchart showing the ET and LAI assimilation procedures used in the
SWAP-SCE scheme. RS, remote sensing; S—G, Savitzky—Golay filtering.

aggregated the yield at a county level by using an area-weighted
average yield. Finally, we compared these estimates with offi-
cial county-level statistics to evaluate the performance of the
data assimilation. Fig. 3 illustrates the overall assimilation
procedure in the SWAP-SCE scheme.

1) Selection of Reinitialized Parameters for the SWAP
Model: Several studies indicate that LAI is sensitive to the ini-
tial dry biomass of the crop (TDWI) and the emergence date
(IDEM) [5], [31], and that the latter parameters can be used
as the reinitialized parameters in the assimilation procedure.
Precipitation and irrigation are two key variables that deter-
mine crop ET. Accurate precipitation data can be obtained from
weather stations, and an optimal interpolation algorithm can
be applied to generate a map of the precipitation distribution.
However, regional cropland irrigation data are usually difficult
to obtain due to the high variability of agricultural irrigation
activity. MODIS ET products can compensate for these prob-
lems by providing the integrated result of precipitation and
irrigation in cropland. Based on our previous work [31], we
selected three parameters that LAI, ET, and yield were sensitive
to (emergence date, irrigation date, and irrigation depth) at two
phenological stages for the irrigation data (heading and filling).
These five parameters were calibrated and adjusted using the
DA strategy. The initial values and ranges of values for the five
parameters are shown in Table I. The crop emergence date and
the irrigation data during the two stages were estimated from
day of year (DOY) 60 to DOY 150 during the assimilation pro-
cedure. The specific date and depth of irrigation in the SWAP
model for each cell in the grid that contained at least 50%
winter wheat were determined through the data assimilation
procedure.
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TABLE 1
L1STS OF PARAMETERS THAT WERE OPTIMIZED

Parameter Initial value Range of values
Emergence date 22 October 7 October to 6
November
Irrigation date 1 DOY 100 DOY 60 to DOY 120
Irrigation date 2 DOY 120 DOY 90 to DOY 150
Irrigation depth 1 9.05 cm 0to 30 cm
Irrigation depth 2 9.05 cm 0to30cm

2) Construction of the Cost Function: The SCE-UA algo-
rithm is a general-purpose global optimization procedure [34]—
[36]. It was designed to deal with the specific types of problems
encountered in the calibration of a conceptual watershed model,
but has been successfully used for optimization in other fields
of study [37], [38].

The traditional cost function, which is determined using the
least-squares method, assumes that the observations are accu-
rate and unbiased. However, observational data usually contains
inaccuracies and biases that will introduce new errors when
using the least-squares method and decrease its effectiveness.
To avoid this problem, we developed a new cost function by
comparing the generalized vector angles of the model output
and the observation profile at 8-day intervals for the ET data
and 4-day intervals for the LAI data. This method has not previ-
ously been used in DA analyses. The computational procedure
can be described as follows.

First, the generalized vector angle of the remotely sensed
data and the model simulations were calculated, and the posi-
tive and negative values of the first differential were calculated.
We then calculated the sum of the generalized vector angles
from the LAI and ET time series, which we used to represent
the cost function’s value:

n n 5
Z ;2 Z yi?
i=1 i=1

where 6 denotes the vector angle between the two profiles, x;
denotes the value from the MODIS LAI or ET time series at
time ¢, y; denotes the SWAP-simulated value from the LAI or
ET time series at time 4, n represents the number of observa-
tions for ET and LAI, and 7 is the constant 3.14. Because the
inverse cosine calculation does not change the monotonicity of
the original function, we eliminated this calculation to improve
the computation efficiency. The final cost function is

3" obsLAIL? \/ 3 simuLAI,?
i=1 i=1

n

>~ obsLAI, - simuLAT;

i=1

> obsETiz\/Z simuET;?

j=1 j=1
+ m (%)
>~ obsET; - simuET;
j=1

0 = arccos
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Fig. 4. Comparisons of the ET profiles with and without data assimilation at
the Gucheng station.

where the prefix “obs” means the observed MODIS ET or LAI
values, the prefix “simu” means the SWAP-simulated values of
ET or LAI and m and n denote the number of observations for
ET and LAI, respectively.

If & = 0, this means that the curves of the MODIS LAI or
ET and the SWAP-simulated LAI or ET time series would have
identical shapes, and the values in the time series at any given
time are proportional; in contrast, the two data sequence are
orthogonal to each other when 6 = 7/2.

III. RESULTS

A. Assimilating the MODIS ET and LAI Values Into the SWAP
Model at a Field Scale

We assimilated the MODIS ET and LAI values into the
SWAP model based on data from the Gucheng station at a field
scale. We compared the SWAP-simulated ET with and with-
out data assimilation with values at the Gucheng flux tower at
a daily scale throughout the main growing season from DOY
57 to DOY 169 at the field scale (Fig. 4). We optimized the
five reinitialized parameters by minimizing the cost function
using the SCE-UA algorithm. We found that the assimilated
ET has a good agreement with the temporal variations in crop
ET recorded at the flux tower. During the period of decreas-
ing growth (DOY 120-167), the values of the assimilated ET
agreed well with those from the flux tower. However, the assim-
ilated ET was higher than the flux tower ET during the period
with increasing growth (DOY 57-120). This may have resulted
from uncertainty in the soil and hydraulic parameters of the
SWAP model, which would lead to a poor soil evaporation
simulation when the soil is not fully covered by the winter
wheat canopy. The SWAP-simulated ET without assimilation
was much lower than the flux tower ET, possibly due to the
lack of accurate irrigation data during the growing season. It is
difficult for the SWAP model to accurately simulate the ET time
series without accurate values for the irrigation parameters. A
previous study [18] also suggested that irrigation had a major
effect on cropland ET. In the absence of accurate irrigation
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parameters, the dominant water input was precipitation, which
tends to produce lower crop ET values.

We performed linear regression to compare the daily and
8-day SWAP-simulated ET with data assimilation and the cor-
responding flux tower ET (Fig. 5). The results show a strong
and significant relationship between the daily values (R? =
0.75, RMSE = 1.16 mm). We also found that the mean abso-
lute error (MAE) compared with the daily flux tower ET
decreased from 1.9mm day~! to 0.91 mm day~! compared
with the SWAP-simulated ET without assimilation. To evaluate
the accuracy improvement compared with the MOD16 ET, we
converted the daily SWAP-simulated ET outputs into the 8-day
values. The resulting ET estimates showed greatly improved
accuracy (Fig. 6), with R? = 0.87 between the assimilated ET
and the flux tower ET and R? = 0.84 between the assimilated
ET and the MOD16 ET. (Note that although the RMSE values
are higher than in the daily comparison, these values are for
8 days rather than 1 day.) Generally, the assimilated ET overes-
timated the flux tower ET but underestimated the MOD16 ET.

Although the MOD16 ET was lower than the flux tower
observations, MOD16 ET provides a good representation of the
temporal variations in ET throughout the growing season. The
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TABLE I1
COMPARISONS OF THE ASSIMILATED WHEAT YIELD USING FOUR
DA SCHEMES

Average Min Max. RMSE
Scheme yield (kg-ha™) (kg-ha™)R* (kg-ha™) P
(kg-ha™)
Without DA 5930 5361 6686 0.03 433 0.394
DA with LAI 5127 4420 5892 0.28 889 0.010
DA with ET 5391 3130 6594 036 1561 0.004
DA with both
LAl and ET 5730 4323 6697 043 619 0.001
Least-squares
cost function 3802 3024 3517 0.19 2289 0.042

for DA

underestimation can be explained by the difference in the mea-
sured spatial scales and the associated variation in the cover
types. Although the flux tower at the Gucheng station is sur-
rounded by farmland, the MOD16 products have a 1-km spatial
resolution, so they include buildings and roads within a pixel
that would inevitably decrease the ET value. In contrast, the
flux tower is surrounded by a 25-ha area of crops.

We assimilated the MODIS LAI and ET time series into
the SWAP model and compared the resulting LAI profiles
at the Gucheng station at a field scale (Fig. 7). The LAI
profile based on assimilating only LAI closely followed the
field-measured values, which indicates that assimilating LAI
based on the generalized vector angle cost function effectively
represented winter wheat’s phenological conditions. It seems
that assimilating only ET did not accurately reflect the crop’s
phenological characteristics, especially during the period of
decreasing growth, when the LAI values remained too high.
However, assimilating both LAI and ET achieved a balanced
result between proper phenological timing and accurate LAI
values.
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and with four DA schemes. All regressions were statistically significant.

At the Gucheng station, the optimized emergence date was
October 30, 2008, the optimized irrigation dates were DOY 97
and DOY 123, and the corresponding irrigation depths were
34 and 9.5 cm in the data assimilation, and this provides
guidance for determining the actual irrigation schedule. In addi-
tion to the optimized irrigation schedule, we also designated
a fixed irrigation on DOY 151 with a depth of 12 cm. In the
study area, winter wheat usually needs irrigation to meet its
water requirements, and the total irrigation amount ranges from
30 to 460 mm; this would require two to six irrigations dur-
ing the growing season [39]. Thus, the estimated irrigation
amount is fairly high and the assimilated ET was higher than
the flux tower measurements. There was also a strong correla-
tion between the flux tower ET and the assimilated ET. These
results show that data assimilation can substantially increase
the accuracy of ET simulation by optimizing the irrigation
parameters.

B. Assimilating the MODIS ET and LAI Products Into the
SWAP Model at a Regional Scale

We applied the DA procedure to the 1-km cells in the grid
that had at least 50% winter wheat using the generalized vector
angle cost function to optimize the irrigation parameters and
emergence date, and aggregated the simulated wheat yield at
a county level to allow validation of the results using official
regional yield statistics, which are compiled at a county level.
The simulated yield obtained using the SWAP model without

data assimilation was quite accurate compared to the official
yield statistics, with RMSE = 433kg -ha—!, but the regres-
sion was not statistically significant (R? = 0.03, p = 0.394),
since many factors other than weather affect crop yield in this
semi-arid region. As a result, the irrigation schedule and other
spatially heterogeneous parameters should be calibrated or opti-
mized to better simulate the spatial distribution of yield at the
regional scale.

We compared the results at a regional scale without assimi-
lation with the results provided by four DA schemes (Table II):
assimilation with ET alone, with LAI alone, with both ET and
LAI, and with a least-squares cost function. The assimilation
with both ET and LAI achieved the highest accuracy, with the
highest R? (0.43) and the lowest RMSE (619 kg - ha—!) among
the statistically significant results. The spatial variability of the
wheat yield in the assimilation using both ET and LAI also
showed good agreement with the official wheat yield statis-
tics at the county level due to the higher spatial detail of the
optimized parameters (Fig. 8, Table III). In particular, the mid-
western part of the study area [which had a concentration of
pixels with high purity for winter wheat; Fig. 2(b)] had higher
average yields than the northern regions. Generally, yield vari-
ability results from differences in solar radiation, temperature,
and farming management (e.g., irrigation and fertilization).

Assimilating either LAI or ET alone improved the correlation
with official wheat yield statistics (with R? of 0.28 and 0.36,
respectively, both p < 0.05) compared to the SWAP results
without assimilation (R? = 0.03, not significant). However,
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TABLE IIT
COMPARISONS OF THE SIMULATED WHEAT YIELD WITHOUT ASSIMILATION AND USING FOUR DA SCHEMES BASED
ON COUNTY-SCALE STATISTICS

Official SWAP  Relative DA with Relative DA with  Relative D[g “;lith Relative Least- Relative
County statigtics without error LAI error ET error L A(I)tan d error squares error
yield DA (%) alone (%) alone (%) ET (%) method (%)

Zhuozhou 5592 5360.68 —4.14 5328.44 —4.71 4100.89 —26.67 5343.67 —4.44 3406.89 -39.08
Gaobeidian 5852 5438.86  -7.06 4970.45 —-15.06 4747.83 —-18.87 4954.22 —15.34 3265.50 —44.20
Dingxing 5987 5368.84 —10.33  4956.95 -17.20 5077.23 —15.20 5716.94 —4.51 3817.61 -36.23
Xushui 6032 5491.13  -8.97 5232.83 -13.25 5023.35 -16.72 6225.21 3.20 4165.43 -30.94
Xiong 5850 567633 297 4420.00 —24.44 3130.00  —46.50 4616.43 -21.09 <3000 .
Rongcheng 6050 5440.22 -10.08  4947.86 —-18.22 5078.95 —-16.05 5769.04 —4.64 3598.50  —40.52
Anxin 5736 5597.62  -3.26 4907.02 -15.19 5123.04 -11.46 5698.46 -1.51 3829.66  —33.81
Qingyuan 6206 5599.75  -9.77 5110.23 —-17.66 5276.69 -14.97 6213.03 0.11 5517.00 -11.10
Gaoyang 5723 5790.96 0.31 5013.29 —-13.16 4846.00 —16.06 5506.71 —4.61 3979.17 -31.07

Li 5776 5865.49 0.68 4606.18 -20.94 519820  -10.78 5124.11 —12.05 3024.00 —48.09
Boye 6185 5771.83  —6.68 5308.85 -14.17 5313.75 -14.09 5278.48 —-14.66 3095.00 —49.96
Anguo 6428 5743.74 —-10.64  5540.13 —13.81 5839.79 -9.15 6430.59 0.04 4357.03 -32.22
Raoyang 6087 593143  -2.56 4973.77 —-18.29 5378.75 -11.64 5794.96 —4.80 3672.00 -39.67
Anping 6069 5980.69 -3.05 5516.15 —-10.58 5717.07 -7.33 6251.21 1.33 3606.64 —41.54
Shenzhou 6256 614943  -1.70 5892.96 -5.80 5728.69 -8.43 6333.46 1.24 3970.68 -36.53
Wugiang 6088 6107.17 -1.31 5603.21 -9.45 5536.53 -10.53 6077.52 -1.79 3309.44  —46.52
Fucheng 5880 6527.52 11.01 5149.93 —12.42 5744.40 -2.31 5283.33 -10.15 3569.45 -39.29
Wuyi 5915 6539.34 10.56 5640.83 —4.64 5483.00 -7.30 5064.50  —14.38 3637.67 -38.50
Jing 6140 6456.83 5.16 5310.56 —-13.51 5996.80 -2.33 5898.17 -3.94 4574.89 -25.49
Hengshui 5978 6627.65 10.87 5249.44 -12.19 5735.37 —4.06 6099.50 2.03 3685.31 -38.35
Jizhou 6020 6310.96 4.83 5048.69 —-16.13 6429.36 6.80 6437.92 6.94 3244.67 —46.10
Zaoqiang 6065 6686.25 10.24 4731.94 -21.98 <3000 - 5595.75 -7.74 3468.00 —42.82
Gucheng 6239 593242 491 5882.48 -5.71 6594.60 5.70 6140.35 —-1.58 4870.00 2194
Mean RE 6.13 13.85 12.86 6.18 37

since the optimization procedure resulted in high variation higher RE than the value predicted by SWAP without assimila-
of reinitialized parameter, it could not improve the accuracy tion. This may have been caused by the low planted density of

of the yield estimation, and error levels were relatively high
(RMSE = 889 and 1561 kg -ha~!, respectively). The largest
error in the estimated yield was obtained using the least-squares
cost function (R? = 0.19; RMSE = 2289 kg - ha~"!). This can
be explained by the fact that the low MODIS LAI values forced
the SWAP model to reach unrealistically low wheat yield values
using the least-squares cost function.

We calculated the relative error (RE) as follows to evalu-
ate the accuracy of the yield estimates using the different DA
schemes:

RE = [(Simulated yield — Official statistical yield)/

Official statistical yield] x 100%. 6)

Table III summarizes the results. Assimilation using LAI or
ET alone increased the error in the estimated wheat yield, with
large mean RE values of 13.85% and 12.86%, respectively.
Jointly assimilating both ET and LAI significantly decreased
the mean RE to 6.18%. Especially for Qingyuan and Anguo
counties, RE decreased to 0.1% and <0.1%, respectively,
compared with the values obtained using SWAP without assim-
ilation (-9.8% and —10.6%, respectively). However, several
counties (e.g., Xiong, Gaobeidian, Boye, and Li counties) had

winter wheat and more heterogeneous agricultural landscapes
in these counties [Fig. 2(b)]. The coarse 1-km MODIS pixels
also contained many non-wheat land cover types, which would
increase the errors in the MODIS LAI and ET products. These
results suggest that the accuracy of the reconstruction of tempo-
ral trends in LAI and ET derived from remote sensing strongly
affects the performance of the generalized vector angle cost
function.

IV. DISCUSSIONS

Coarser pixels, such as those in the 1-km MODIS reflectance
data, usually result in LAI or ET values that are obtained
from more heterogeneous surfaces, leading to greater errors
than would occur with higher-resolution data such as Landsat
TM or ASTER data. Using coarse remote-sensing data in the
assimilation procedure introduces a scale disparity between
the remotely sensed pixels and the field scale that must be
accounted for. Several previous studies confirmed that success-
ful results cannot be obtained by directly assimilating 1-km
MODIS LAI and ET values into crop models due to the low
values in these products [5], [31], [40]. To solve this issue,
we developed a generalized vector angle cost function to allow
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assimilation of the temporal variations in the MODIS ET and
LAI data rather than assimilating their absolute values into the
SWAP model in this study.

In addition to the spatial scale disparity, the temporal dispar-
ity between the remote-sensing observations and the modeled
outputs also affects the performance of the data assimilation.
The MODIS ET and LAI products had 8- and 4-day time inter-
vals, respectively, but the SWAP model generates daily outputs.
Thus, a temporal transformation is required to provide consis-
tency of the temporal scale. Furthermore, to obtain more precise
crop ET estimates, we need remote-sensing-derived LAI or ET
with higher temporal resolution so that daily LAI and ET can
be assimilated into the model to improve the model’s yield sim-
ulation. For example, the two irrigation dates estimated using
the SWAP-SCE scheme had errors of +4 days due to the 8-day
time step in the MODIS ET product.

In this study, we developed a crop model—-data assimilation
framework for assimilating phenological characteristics from
the MODIS ET and LAI time series based on a generalized
vector angle cost function. The validation results showed that
the estimation accuracy for winter wheat yields improved con-
siderably when assimilating both the MODIS ET and LAI
time series. This method does not require field-measured LAI
and ET at a regional scale, so it would be easy to extend to
applications in other regions. However, this method depends
strongly on high-accuracy crop type maps that allow the cre-
ation of accurate pixel-purity maps for the study area, because
the original MODIS LAI and ET trajectories cannot adequately
represent the phenological characteristics of winter wheat in
mixed pixels that contain a large proportion of artifacts (e.g.,
buildings and roads) and other crops with different phenology.

In this study, we selected LAI and ET as the assimilation
variables used in the cost function. Additional important state
variables (e.g., soil moisture) that are closely related to crop
yield should be incorporated into a future DA framework to
test the impacts on the estimated crop yield. Hybrid approaches,
such as combining the use of EnKF with four-dimensional vari-
ational (4-DVar) data assimilation, would allow simultaneous
estimation and updating of the model parameters and state vari-
ables, and would further improve crop yield simulations at
both field and regional scales [41]. In addition, we assigned
equal weights to LAI and ET in the cost function developed
in the present study. Assigning different weights to ET and
LAI at different phenological stages to minimize the impact
of observational errors would further improve the assimilation
results.

One important application for the crop model-data assimi-
lation system developed in this study would be to predict crop
yield before harvesting. However, the accuracy of this appli-
cation would depend strongly on the accuracy and resolution
of the weather data inputs (e.g., precipitation and temperature)
for future periods. Several previous studies have implemented
crop yield predictions based on different scenarios that used
historical weather data from a dry, a wet, and a normal year
[42], [43]. However, due to high variability of weather data in
the future, this method would inevitably contain relatively large
errors. One promising method might be to couple medium-term
climate prediction from climate modeling and crop modeling
and thus improves the ability of predicting crop yield.
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V. CONCLUSION

In this study, the SWAP process-based growth model was
used to estimate winter wheat yield through incorporating time
series of MODIS LAI and ET products using generalized
vectorial angle cost function with the SCE-UA optimization
algorithm. Generally, crop growth models are subjected to
structural and inputs errors. Thus, their simulation for crop
growth and yield estimation would deviate from the reality.
It was difficult for the SWAP model to simulate the actual
crop ET temporal variation with insufficient irrigation data dur-
ing the growing season. The validation results showed that the
MODIS ET or LAI products have the ability to capture the tem-
poral variation of ET or LAI despite the absolute values are
underestimated for pure wheat pixels. Validation results show
that the generalized vectorial angle cost function approach gen-
erates accurate ET or LAI trajectory throughout the growing
season and improves the agreement between assimilated ET or
LAI and the field-measured ET or LAI Our results also show
that assimilating LAI is more effective than assimilating ET in
improving regional wheat yield estimates. By simultaneously
assimilating the time series of MODIS LAI and ET products
using a generalized vector angle cost function, we were able
to greatly improve the accuracy of winter wheat yield estima-
tion at the regional scale. One advantage of the current method
is that it can be easily applied in other regions with little or no
modification simply by parameterizing the model to account for
crop and climatic characteristics. However, the results would
be greatly improved by obtaining better parameter values for
key factors such as soil moisture and the optimal irrigation
schedule and possibly by assimilating data for other factors
that affect crop growth and yield (e.g., soil moisture). Remote-
sensing data with higher temporal and spatial resolution would
also improve the results by improving the tracking of the LAI
and ET trajectories.
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